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EQUATIONS OF ELASTOVISCOPLASTIC MEDIUM WITH 

FINITE DEFORMATIONS 

V. I. Kondaurov UDC 539.371 

In this paper, we examine the nonstationary equations of the theory of flow of finitely 
deformed elastoviscoplastic materials. We analyze two approaches to describing the kine- 
matics of such media. We study the restrictions imposed on the determining equations by the 
entropy inequality and the requirements of invariance relative to orthogonal transformations 
of the actual, unloaded and initial configurations. The complete system of equations is 
written in divergence form, which permits obtaining all allowable relations at strong dis- 
continuities. In the adiabatic approximation, the system of equations reduces to a sym- 
metrical form and we formulate sufficient conditions for hyperbolicity. 

I. Kinematics. Let ~ be the radius vector of a particle in the medium in the initial 
configuration of the body and x the actual instantaneous configuration. We shall assume that 
the initial configuration is the natural configuration [I, 2] with constant temperature O= O 0 
and density p = po = const. We shall denote by ei, e j the basis vectors of the starting and 

accompanying Lagrangian system of coordinates [I] and by e~ the basis of the spatial Carte- 
sian coordinate system, such that 

d~ = e~%~, d~ = e~kek = e~J~'~. ( 1 . 1  ) 

We shall assume that the mapping (deformation) of the starting configuration into the 
actual configuration 

x = x(~, t), ( 1 . 2 )  

where t is the time, is mutually unique and continuously differentiable the required number 
of times. For fixed t, it follows from (1.2) that 

dx = F.d~ = (~~ ~b). (e~ ') = e~ (1.3) 

where F is the tensor of the gradient of the total deformation. Equating (I.I) and (1.3) we 
see that 

e] = ~F!j, ( 1 . 4 )  
o 

i.e., the matrix F i" is the linear transformation of both d~ into dx and the basis e~ into 
"3 

the basis ~j. 

Using the definition of the velocity vector v = 3x(~, t)/3t[$ and relation (1.4), we 
obtain 

from where in view of the arbitrariness of dx follows the kinematic relation [I, 2] 
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FF -~ vv ,  ~ t  = F ~ O v i l o x  k (1 5) .j . 

The dot here and in what follows indicates differentiation with respect to t with ~ = const. 
As shown in [3], relation (1.5), which is the condition for consistency of the deformation 
and velocity fields, can be put into divergence form: 

I 
o r ,  t a k i n g  i n t o  a c c o u n t  t h e  l a w  o f  c o n s e r v a t i o n  o f  m a s s ,  pA = Po f o r  b o d i e s  w i t h  p i e c e w i s e  
c o n s t a n t  d e n s i t y  i n  t h e  i n i t i a l  c o n f i g u r a t i o n  i n t o  t h e  f o r m :  

~ (PF~i) 1 0 t  Xm+~x ~0 {pvgF}}_ pviFS} = 0. (1 . 6 )  

We s h a l l  now i n t r o d u c e ,  i n  a d d i t i o n  t o  t h e  i n i t i a l  and  a c t u a l  c o n f i g u r a t i o n s  o f  t h e  b o d y ,  
an  u n l o a d e d  i n t e r m e d i a t e  c o n f i g u r a t i o n  [1] w i t h  t e m p e r a t u r e  O = O 0 .  We s h a l l  d e n o t e  t h e  r a -  
d i u s  v e c t o r  o f  a p a r t i c l e  i n  t h e  u n l o a d e d  s t a t e  as  y = y ( ~ ,  t )  a n d  we s h a l l  a s s u m e ,  a s  d o n e  
i n  m o s t  m o d e r n  w o r k  on  f i n i t e  d e f o r m a t i o n s  o f  an  e l a s t o p l a s t i c  m e d i u m  ( s e e ,  e . g . ,  t h e  r e v i e w  
i n  [ 4 ] ) ,  t h a t  t h e  d i f f e r e n t i a l s  d x ,  d y ,  a n d  dE a t  t = c o n s t  a r e  r e l a t e d  w i t h  o n e  a n o t h e r  by  

the relations 

dx = F.d~, dy = P.d~, dx = E.dy.  (1 . 7 )  

It follows from (1.7) 

F= E.P, (1 .8) 
where E is the e]astic deformation gradient that vanishes after the stresses are removed from 
the surface of an infinitely small volume; P is the gradient of the plastic, residual defor- 
mation det P > 0, det E > 0, EP ~PE. 

Now, let %~ be the basis of a Lagrangian system of coordinates in the space of the un- 
loaded configuration such that 

~y = ~ ~. ( 1 . 9 )  

Here and in what follows, the asterisk indicates quantities relating to the unloaded state. 

We shall show that in contrast to the matrix F, which is the transformation matrix for 

both d~ into dx and ~i into ~j , the elastic gradient matrix E is no longer the matrix de- 

scribing the transformation of the basis ~j of the unloaded configuration into the basis 
of the actual configuration. We shall define the matrices ~b and ~.~" as follows: 

. . . .  ~. g ~ . ~ :  o ~. 
= = % f - j .  (1 10) 

It follows from ( 1 . 1 0 )  

F > . ~ , ~ t  ~- a" (1 11) = . j  = 3 ~ a , ~ .  j . 

Substituting (I.I0) into (1.9), we obtain 
. o �9 o o o �9 

dy -= eid$~ = ea,a'~'.~ d~ ~ = ( e J ' . ~  eb) �9 (e id~ ~) = > .  d~. 

On the other hand, dy = P-d~ and, therefore ~ = P. Comparing the compositions (1.8) and 

(I.II), we find, substituting >----P E= ~ff~-1 ~=p-iEp ' from where it is evident that E is 

not in general the matrix transforming the basis vectors %i into~ . 

A similar result is obtained if we start from the representations [15]: 

dx : F-d~, dy = E.d~, dx ---- P-dy, F = P .E ,  

~ = % F ~  , ~ - - - % ~ . j ,  ~ = e, ,X.~' ,  r = ~2.>. 

In this case, ~= E, P =  ~-I, ~:= E~.PE. 

As can be seen from the discussion above, in the case of elastoplastic bodies, it is 
necessary to distinguish the measure of elastic and plastic deformations: transformation of 
the differentials of the radius vectors in tran.sforming from one configuration to another or 

585 



transformation of the unit basis vectors. In the case of nonlinearly elastic materials, 
these transformations eoincide identically. 

Let us now examine how the tensors F and P transform under orthogonal transformations 
of the configurations. We shall denote by a tilde the values of quantities after the refer- 
ence system is changed or, which is the same thing, after superposing translation and rota- 
tion on the actual configuration as a rigid body with fixed initial and unloaded configura- 
tions. From Eq. (1.7) and the relations determining the change in the reference system [2], 

= z(t) + Q(t)(x - Zo), ( 1 . 1 2  ) 

where z(t) -- zo is the translation vector and zo is the radius vector of a point relative to 
which the rotation occurs, determined by the orthogonal tensor Q(t), it follows 

~ = Q.F,~=P. (I.13) 

Let Y = Y(t) be the transformation tensor, which does not change the metric of the unloaded 
configuration. Then, 

F = F, V = Y.V, ( 1 . 1 4 )  

where the bar indicates the value of the quantity after the transformation Y(t) with fixed 
actual and initial configurations. 

Finally, let K = const be the orthogonal tensor transforming the initial configuration. 
With fixed actual and unloaded configurations, we have 

Y = V.K, ~ = V.K, (1 .15) 

where the double bar indicates the quantity after the transformation indicated. 

Let us examine the polar decompositions 

F=RU=VR, P=HW=MH, (1.16) 

where R and H are orthogonal tensors; U, V and W, M are symmetrical positive-definite tensors. 
Using the theorem on theuniqueness of the polar decomposition, we obtain from (1.13)-(1.16) 

R = Q R ,  U = U ,  V=QVQ T, H = H ,  1,V=W, M = M ;  (].]7) 

= R, U =  u,  ~ =  v ,  ~ = Yn,  W = w ,  ~ =  yMyT;  ( 1 . 1 8 )  

= R K , ~ = K T U K ,  V : V , ~ : H K ,  ~ ' = K T W K , M = M .  ( 1 . 1 9 )  

2. Determining Equations. We shall examine the determining differential relations for 
moment-free homogeneous isotropie elastoplastic media, sensitive to the rate of deformation. 
Such equations are a quite good approximation for describing the basic effects observed with 
elastoplastic deformation of materials and automatically satisfy the principles of determinism 
and local action [I, 2]. Later, we shall study the restrictions imposed on the determining 
equations by the requirements of invariance and restrictions due to the entropy inequality. 

We shall assume that the thermodynamic state of a particle is completely determined, if 
the following external variables are given: the tensor @ > 0, temperature g = VO, and tem- 
perature gradient F, as well as internal variables , characterizing the change in the internal 
structure of the material accompanying plastic deformation: the tensor P and the strengthen- 
ing parameter X. We shall denote for convenience ~ =(F, P,O,Z, g} and illustrate the deter- 
mining equations in the simplest, functional form 

A = A(~) ,  a = X(~=), ~ = n(~),  q = S(~); (2 .1 )  

*(P, X, ~a)= O, r X, ~=)= 0, 0(@ij, +)/O(Pm~, X)~0, (2.2) 

where A is the free energy density, o is the Cauchy tensor, ~ is the entropy density, and q 
is the heat flux. The functions A(~), X(~), D(~) and S(~) are assumed to be sufficiently 
smooth. The evolutionary equations (2.2),.where.0 is tensor and ~ scalar functions of their 
arguments, are assumed to be solvable for P and X. 

Let us now examine the orthogonal transformation and parallel transport of the initial 
configuration with fixed unloaded and actual configurations. Taking into account the fact 
that with this transformation the following equations are valid in addition to relations 
(1 .19 )  
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~ = P K , ~ =  ~, (2.3) 

we find that a necessary and sufficient condition for isotropy and homogeneity of the elasto- 

viscoplastic material is 

A = A(V, PRT), o =~Z(V, PRT), ~ = ~(V, PRT), q = S(V, PRT), ( 2 . 4 )  

�9 (v, PR r, ~ a  r, ~) = 0, ~W, PR r, Pa r, ~ = 0, 

where for brevity we drop the arguments O, X and g, which do not vary under the transforma- 
tion being examined. The necessity of (2.4) can be easily checked if for a fixed particle 
and fixed time the arbitrary constant orthogonal tensor K is set equal to the tensor R T. 
Substituting (1.19), (2.3) into (2.4), it can be shown that (2.4) is a sufficient condition. 

If we examine the condition for invariance of the determining equations (2.4) relative 
to orthogonal transformations of the unloaded configuration, then we obtain 

A = A(V, B), o = Z(V, B), ~ = ~(V, B), q = S(V, B), ( 2 . 5 )  

O(V, B, R~VR T, %) = 0, ~(V, B, RWR T, %)= 0, 

where B = RWR T. 

The condition for invariance of equations relative to transformations of the unloaded 
configuration, it seems to us, completely eliminates the problem of the nonuniqueness of the 
decomposition F = E-P, discussed many times beginning with [6] and is a natural generaliza- 
tion of different assumptions concerning the mutual relation between the actual and unloaded 
configurations. 

In order to prove the necessity, we shall fix the particle ~ at time t = to. Now, let 
the transformatiofi Y(t) for O ~ x ~ t o  be such that 

Y(x) = R(%)HT(x), Y(x) = R(to)Hr(~. ( 2 . 6 )  

At time T = to, taking into account (1.18) and (2.6), we have 

PR r = RWR T, PR r = R * R  r,  V = V, 

from where follows the necessity of (2.5). The proof that (2.5) is sufficient is obtained 
if relations (I.18) are substituted into them. 

Let us clarify the restrictions imposed on (2.5) by the requirement of invariance rela- 
tive to orthogonal transformations of (1.12) of the actual configuration. Then, taking into 
account the fact that A, o, ~ and q are object [2] quantities, we obtain, keeping in mind 
( 1 . 1 7 ) :  

A(QVQ r, QBQ T, Qg) = A(V, B, g), ( 2 . 7 )  

Z(QVQ T, QBQ T, Qg) = QE(V, B, g)QT, 

N(QVQ r, QBQ r, Qg)=  N(V, B, g), S(QVQ r, QBQ v, Qg)=  Qs(v, B, g), 

QRWRTQ r = ~(QVQ T, QBQ r, Qg) = Q~(v, B, g)QV, 

= r r, QBQ r, Qg) = r165 B, g), 

where the resolved form of the laws of plastic flow and strengthening are used: 

RWR T: W(~, B, g), % = ~, B, g). (2.8) 

It follows from (2.7) that the functions A, Z, ~, S, ~ and ~ are isotropic functions of their 
arguments. Assuming, in particular, that Q = R T, we obtain 

A : A(U, W, RTg), ~ : ~(U, W, RTg),a : RZ(U, W, RTg)R T, ( 2 . 9 )  

q = aS(U, W, Rrg), W = ~(U, W, Rrg), ~ =  ~(U, W, Rrg). 

The necessary and sufficient conditions of invariance formulated above do not, of course, 
give unique measures that should be used for deformations and rates of deformations and the 
specific form of the determining equations of an elastoviscoplastic medium, but they greatly 
narrow the class of permissible equations of state. 

Let us clarify the restrictions imposed on the form of the determining equations (2.9) 
by the second law of thermodynamics, which we shall use in the form of the Clausius--Duheim 
inequality [2]: p~ -- div(0/@)q)- (I/@)pr~ 0. 
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Using tie relation A = c -- DO, where ~ is the internal energy density, the reduced equa- 

tion for energy balance p~ = tr(o-Vv) + div q + or and the kinematic equation (1.5), the en- 
tropy inequality can be written in the form 

( o a ~ ]  t r f O A ~ v ~ _ O A .  OA-  OA {(U_IRTaR) ~} + p__~ q,g ~> 0. - -  + ~ - t r  ( 2 . 1 0 )  

For the elastoviscoplastic material examined, it is postulated that in the space (U, W, O, • 
g) there exists a surface 

/(U, W, O, Z, g ) = O ,  ( 2 . 1 1 )  

called the static condition of plasticity which separates open regions of elasticity, where 
- 0, ~ - 0, and plasticity where ~+0,~q=0. 

The values of the functions and their derivatives, determined in the elastic and plastic 
regions, are assumed to be continuous in the entire space, including the surface (2.]]). 
Constructing in a standard way [2] the local continuation of the process, satisfying the law 
of plastic flow and strengthening, we obtain from (2.]0) 

A = A(U,  W, X, O), aA/ag = O, ~l = --o14/o0,  ( 2 . 1 2 )  

= (pFOA/OU)R T = pVOA/OV =- pFOA/oFT; 
8 = h.g + tr(,.~') + b ~  0, where ( 2 . 1 3 )  

"c ~ " OA / OW  = - - ( R  T.OA/OB). R,  b =  --OA/OZ9 h = (UpO)q. ( 2 . 1 4 )  

If we are examining an isothermal (g ~ 0) or adiabatic (q ~ 0) approximation, the Clausius-- 
Duheim inequality transforms into the Planck inequality for the internal mechanical dissipa- 
tion and (2.13) takes the form 8~=tr(~-IF)+b~>~0. If the material is located in an elastic 
state, then ~F=0,~=6 M m 0 and (2.13) is the Fourier inequality for heat dissipation: 
8 r = h.g >/O. 

3. Complete System of Equations. We shall examine as the solution vector the set of 
quantities 

. = 1o,  ~ ,  r:  i ,  w~j ,  ~} = { , ,~},  = = ~, 2 . . . . .  zo 

In Eulerian coordinates x i with orthonomal basis ei, the complete system of equations can 
then be written in the form of differential equations 

dO " O__ O_~176 ~ 0._~+ '.ji (r-~- r(P)), (3.  |) 
dt pc FOo Ox ~ Pc~ox k c~ . 

rlOi k O~A OFmn k o~mn OWmn ~ Ob 0~. k Oil O0 

dF~ Ov ~ ~k dWij d~ 
- -  o x  - - ~ - ~ '  at = , t ,  (u,~), ~ = , ( % )  dt U20  

and end relations 

i Fi 0A (3.2) 

q~= ~ (u,.,. w~., o, z, oo/o~")7 

OA Oq Fi .=HimU . 'l = -- T6' ce ~ 0 b-6' J m, 

~mn .OA OA 
= --OWmn' b = - -  0-'X" p = Po/det 11F] II' 

r(p) ~ (~mn 00"~ran\ " Ob 
9 

where  b i  i s  t h e  mass f o r c e ,  c F i s  t h e  h e a t  c a p a c i t y  w i t h  c o n s t a n t  d e f o r m a t i o n s ,  r ( P )  i s  t h e  
d e n s i t y  of  h e a t  s o u r c e s  due to  work on i r r e v e r s i b l e  d e f o r m a t i o n s .  I t  i s  a s sumed  i n  Eqs .  ( 3 . 1 )  
t h a t  t h e  t e m p e r a t u r e  g r a d i e n t  g = v O h a s  a n e g l i g i b l e  e f f e c t  on  t h e  p l a s t i c  p r o p e r t i e s  o f  t h e  
m a t e r i a l ,  so  t h a t  ~mn = ~ m n ( u a ) ,  ~ = ~ ( u a ) .  

U s i n g  t h e  t e m p e r a t u r e  e q u a t i o n  i n  t h e  fo rm o f  t h e  d i f f e r e n t i a l  law of  c o n s e r v a t i o n  of  
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total energy, the equation of motion in the form of the law of conservation of momentum and 
the kinetic equation for Fg in the form of the law of Conservation of the consistency of J 
deformations (1.7), and the equations of the theory of flow (2.9), the system of equations 
(3.1) can be written in the form of a complete system of divergence forms: 

0 ~  (%)lOt + ~ (%)L0~ = & (%),  ( 3 . 3 )  

w h e r e  E = ~ + v i v i / 2 ;  a ,  8 = 1, 2 ,  . . . ,  2 0 ;  k = 1, 2 ,  3 ;  

~ = I,,Fi I- m ~ -- [pv~F{ - pviF~ [096' (3.4) 
I v j I '  -ro~-- I ' ,' ; fc~---- 

Writing the system of equations of an elastoviscoplastic medium in the form of a com- 
plete system of differential conservation laws permits determining not only the classical, 
but also the generalized solution [7], to obtain all allowable relations on strong discon- 
tinuity waves, and to apply the conservative method of numerical calculation to the material 
being studied [8]. We emphasize that for the system of equations of the theory of flow of 
an elastoplastic material, insensitive to the rate of deformation, the set of independent 
divergence forms is exhausted by the laws of conservation of energy, momentum, and consis- 
tency of deformations. 

The divergence form of the complete system of equations is especially simple in the case 
of Lagrangian coordinates ~k: 

~ _ ~ r m i v i +  t F_l ,n.k~ 0~ [ T h ~ j =r-l-b*vi, ( 3 . 5 )  

0~ m 0~ m �9 

I n  t h e  a d i a b a t i c  a p p r o x i m a t i o n  (qk  = 0 ) ,  t h e  s y s t e m  ( 3 . 5 )  c a n  b e  s y r n m e t r i z e d .  I n  o r d e r  
t o  show t h i s ,  we s h a l l  o b t a i n  a s  a r e s u l t  o f  ( 3 . 5 )  t h e  e q u a t i o n  

{ = r/O + 3, 6 = zmnR*=n + b* (3.6) 

for the rate of change of entropy. Expression (3.6) is an additional law of conservation, 
valid in regions of smooth flows. In order to derive (3.6) let us multiply the first equa- 
tion (3.5) by the as yet unknown factor of u = a(uu) and the second by Bi, the third by yJ, 

i 

the fourth by %ji, and the fifth by g and add all equations. As a result we obtain the sys- 
tem 

from which we find 

= v i j" i . . . .  

-~o (~ + * = = ~  + b,) = ~ + =b% + ~b ~ + x=~%~ + ~,, 

~=B-'  ~ i = - g ,  ~ = - g  g = ~ b .  

U s i n g  t h e  i d e n t i t y  dA = Tm~dF l "  -- TmndWmn --  bd•  -- ~dO,  e q u i v a l e n t  t o  r e l a t i o n s  
�9 1 . m  

a n d  ( 2 . 1 4 ) ,  we c a n  v e r i f y  t h a t  e x p r e s s i o n s  ( 3 . 8 )  s a t i s f y  t h e  s t r o n g e r ,  c o m p a r e d  t o  
c o n d i t i o n s :  

(3.7) 

(3.8) 

(2.12) 

(3.7), 

d~l = adE q- ~idv ~ -~- ~]JidFj -~- jJi dW ij + $dx, 

+ = o .  

(3.9) 

Writing (3.9) in the form 
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e ( ~ z + ~ , ~ +  ~ ~ -. = T~F ~ .~ )2~Wi ~ .st_ ~X - -  ~1 ) Ed~ -}- vid~i -4- Wi~d~J i 2c" xd~, 

d (aTmiv i+  mi ~T + r162 = T ' ~ e ~  + T ' ~  + deV? 

and d e n o t i n g  

L ~  ~ - ? { f  i.-~)~W i ,--~Z-.}-"11 i [ 1  i , 1 " ) 

we obtain 

E = - -  OL~ v i = --  OL~ Fj=--OL~ i, Wij  = - -  OL~ ji, % = - -  OL~ 

Tmivi _~_ OLmtOa, T mi = OLrn/o~i, vi6~ = OLm/OT{. 
(3.10)  

Relations (3.10) permit writing the system (3.5) in symmetrical form 
O m 

OLqa -~ OLqo ~ = LO Oqf~ Lm Oq___fi~ = __ ~ 1~' ( 3 . 1  1 

o,m : 02LO,.i/Oqa'Oq~, under the condition that where q= = {a, ~i, ?,s.', %ji, $}; L ~ = OLO'm/Oq=; and Lq=q~ 
0 

detl]OqJOu~H=~O. I f  the  m a t r i x  LqaqB i s  p o s i t i v e ' d e f i n i t e , o  then  the  sys t em (3.11)  w i l l  be 

h y p e r b o l i c  [9]. The c o n d i t i o n  t h a t  the  m a t r i x  Lqaq~ be p o s i t i v e - d e f i n i t e  i s  e q u i v a l e n t  to  
the condition of convexity of the function of internal energy c with respect to its arguments: 
(O~(p~)/OpaOp~)~a~>O , V~a~=0, a, ~=~, 2, ... 20 where Pa = { Fi Wij, X, n}. The proof of , , j' 

the equivalence is equivalent to that in [3] for the case of nonlinear elasticity. 

We note that a sufficient condition for hyperbolicity is much stronger than the neces- 

sary condition: 

w 0 8 ( F  n , ran' %, 
(F~h) ~ ~ ~ J  > O, VZ ~ 4= O, 

OFaOF b 

which, as can be shown, occurs for the system of equations being studied. 

Let us examine, in conclusion, the relations at strong discontinuities in the elasto- 
O~p I[  O~p O~p \a12 

viscoplastic medium. Let D = - - - ~ I ( ~ )  be the velocity of the surface of discontinuity 

O~ / [0~  O~a/2 be ~(x ~, t)= 0, and let ni=~-~zil~] the components of the~. unit spatial normal oriented 

along the direction of motion. Then, at a strong discontinuity, for the system of equations 
(3.3), relations [7]--D[~~ are valid, where [a] = a + -- a- is the jump in the 
quantity a. The indices (--4) indicate the state of a particle after and in front of the front. 

Denoting by G = D -- ni vi the velocity of propagation of the surface ~ = 0 relative to the 

particle of the medium and using (3.4), we obtain 

[pGE] q- [oikviln k "q- [qkln k = O, [pVVi] q- [oCk]n~ = 0, (3.12)  

[paF~]  + [O,,~F~] nh = O, lPCW~sl = 0, [pCX]=0.  

i 
C o n t r a c t i n g  the  e q u a t i o n  f o r  the  jump in  Fj w i th  the  normal n i ,  we f i n d  t h a t  fo r  D ~= 0 

[ Pr~] n~ = O. (3.1 3 ) 

The meaning of relations (3.13) becomes clear, if the relation between the components of the 
normal to the surface ~ = 0 in the initial and actual configurations is kept in mind: 

o 

dS p 

where dS, dS are the elementary surface areas on the surface of discontinuity in the con- 
figurations examined. It follows from here that (3.13) expresses the continuity of the nor- 

o 

mal n in the initial configuration. 

Using (3.13), it can be shown [3] that the condition of continuity of the mass flow is 

satisfied: 

[pG] = O. (3.14) 
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i 
Equations (3.13) and (3.14) make it possible to write an equation for the jump in Fj 

in the form 

a f t e r  which  we s h a l l  r e p r e s e n t  the  r e m a i n i n g  e q u a t i o n s  (3 .12)  i n  the  fo rm 

[o{hJn h - - ( pG) 'h  i = O, OG[W/i]  = O, pG[xI = O. 

On a contact discontinuity_ (G = 0) [v i] = [aik]nk = ~k]n k = 0, while the quantities ~ij], 

[X], [e] and[F~] are arbitrary. In the case of a shock wave (G ~ 0), it follows from (3.15) 

that the symmetrical part Wij of the plastic gradient and the strengthening parameter X are 

continuous, while the remaining quantities are discontinuous. 
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ALLOWANCE FOR DIFFERENCES IN STRAIN RESISTANCE IN THE 

CREEP OF ISOTROPIC AND ANISOTROPIC MATERIALS 

A. A. Zolochevskii UDC 539.3 

The behavior of many light alloys and also polymer, composite, and other materials under 
creep conditions is characterized by differences in strain resistance. This property usually 
manifests itself in conventional tensile, compressive, and torsional tests. 

The classic creep theory for isotropic media, based on the Mises number, does not account 
for differences in strain resistance. It does not distinguish between tensile and compres- 
sive strain resistance characteristics and admits the possibility of analytical description 
of shearing strain on the basis of the characteristics determined in tensile tests in spite 
of the fact that it differs fundamentally from linear strain. Equal tensile, compressive, or 
shearing strength characteristics are ascribed to materials whose creep is satisfactorily 
described within the framework of the above model. In the opposite case, differences in re- 
sistance to these two or three types of strain are contemplated. Generally, the tensile, 
compressive, and shearing strain resistance characteristics should obviously be considered as 
three mutually independent characteristics of materials. 

Kharkov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 140-144, July-August, 1982. Original article submitted July 16, 1981. 
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